МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ДОШКОЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«Центр развития ребёнка «Детский сад № 1 «Жар-птица»

658227, г. Рубцовск, проспект Ленина, 271 тел. (38557) 7-00-75, тел/факс (38557) 7-00-76 e-mail: 1-dsad@mail.ru

Семинар-практикум для педагогов ДОУ «Цифровая образовательная среда «ПиктоМир», как средство формирования основ алгоритмизации и программирования у дошкольников»

Подготовили:

Руденко Ольга Васильевна, воспитатель первой квалификационной категории; Прохода Вера Викторовна, воспитатель первой квалификационной категории

Место проведения: МАДОУ «ЦРР д/с № 1 «Жар-птица»

Участники: педагоги детского сада

Цель: повышение профессиональной компетентности педагогов по вопросу формирования основ алгоритмизации и программирования у дошкольников посредством цифровой образовательной среды «ПиктоМир».

Задачи:

- » познакомить участников семинара-практикума с цифровой образовательной средой «ПиктоМир»;
- раскрыть понятие алгоритма и способы формирования алгоритмического мышления у дошкольников;
- родемонстрировать возможности использования робототехнического образовательного набора «ПиктоМир» для успешного обучения воспитанников;
- показать на примере дидактических и игровых заданий как происходит формирование основ алгоритмизации и программирования;
- создать условия для формирований у педагогов умений использовать полученные знания в воспитательно-образовательной деятельности с дошкольниками.

Формы:

- презентация;
- мини лекция;
- игровые задания

Оборудование:

установка, робототехнический образовательный набор «ПиктоМир», музыкальный центр, флипчарт.

Методы: игровой, демонстрационный, практический (выполнение упражнений), словесный, наглядный (просмотр презентации).

Структура семинара-практикума:

- 1. Вводная часть
- 2. Теоретическая часть
- 3. Практическая часть
- 4. Заключительная часть семинара (рефлексия)

ХОД СЕМИНАРА:

1. Вводная часть

1 педагог: Добрый день, уважаемые педагоги!

2 педагог: Мы рады приветствовать вас на борту нашего космического корабля.

1 педагог: Сегодня мы с вами отправимся в космическое путешествие. Путешествуя между планетами, совершим посадку на космодромах.

2 педагог: Перед взлетом напомним правила поведения на корабле. Во время полета запрещено вставать, выходить из салона космического корабля и пользоваться средствами связи. Пристегните ремни. Начинаем обратный отсчет 5,4,3,2,1, пуск! Приятного полета.

(звучит космическая музыка)

1 педагог: Уважаемые пассажиры! Наш полет проходит на высоте примерно ... в ообщем достаточно. Так, что все ваши проблемы и заботы, если взглянуть на них с высоты, стали маленькими и не значительными!

2 педагог: Температура за бортом ... комнатная, атмосфера на борту космического корабля - дружеская! В общем, полет проходит нормально. А как вы думаете, куда мы летим?

(ответы педагогов)

2. Теоретическая часть

1 педагог: Мы с вами совершим сегодня космическое путешествие по цифровой образовательной среде «ПиктоМир». Что же такое «ПиктоМир»? Предлагаю взглянуть в иллюминатор.

(педагоги смотрят на экран, на экране цифровая образовательная среда «ПиктоМир»)

2 педагог: Вы можете наблюдать цифровую образовательную среду «ПиктоМир», которая представляет собой космическое пространство, состоящее из передвижных космодромов. Путешествуя между планетами, космические корабли совершают посадки на космодромах. Космодромы состоят из квадратных плит. В этой цифровой образовательной среде начинается раннее знакомство дошкольников с системой научных понятий программирования. «ПиктоМир» — единственный (на сегодня) в мире курс программирования для дошкольников, который имеет продолжение в начальной школе, что позволяет говорить о преемственности уровней образования.

1 педагог: Виртуальный мир населяют роботы. Их задача – обслуживать космодромы. Давайте познакомимся с роботом Вертуном.

(на экране робот Вертун)

Вертун — это космический робот. Он предназначен для ремонта космических платформ-космодромов. Космические корабли взлетают и садятся на космодром, при этом некоторые плиты повреждаются и их нужно чинить — закрашивать специальной краской. Эту задачу и выполняет робот Вертун. Вертун понимает и умеет выполнять 4 команды: вперед, налево, направо, закрасить.

(на экране робот Двигун)

2 педагог: Робот Двигун, живет на платформе космодрома, он отвечает за передвижение грузов на грузовых космических платформах-складах. Поверхность платформы-склада выложена квадратными плитами. Между некоторыми плитами-клетками есть стены. Путешествуя между планетами, грузовые космические корабли перевозят с космодрома на космодром грузы. Для наведения порядка необходимо правильно распределить груз по указанным местам склада на платформе-космодроме. Двигун движется по плиткам платформы-космодрома и двигает на нужные места грузы — бочки и ящики. Для перемещения груза Двигун толкает груз перед собой. Двигун понимает и умеет выполнять команды: «вперед», «налево», «направо». По команде «вперёд» он совершает перемещение из одной клетки в другую, и если Робот-Двигун не может отодвинуть груз от стены. Тут ему на помощь придет Робот Тягун.

(на экране робот Тягун)

1 педагог: Как и другие роботы, Тягун живет на клетчатой поверхности, замощенной квадратными плитками. Тягун движется по клетчатому полюскладу и «тащит» на нужные места грузы — бочки и ящики. Тягун понимает и умеет выполнять четыре команды: вперед, налево, направо и тащить. Тягун, как и Двигун перемещает бочки и ящики в клетки. Если на поле-складе имеется клетка — это означает, что в ней: бочка или ящик.

(на экране робот Ползун)

1 педагог: Ползунов два. Они близнецы. Один Ползун виртуальный, он живет в цифровой среде, а другой Ползун настоящий, сделан из фанеры и ползает по настоящим коврикам на полу комнаты. Управлять данным роботом можно с помощью пульта, установленного на планшете. Ползун понимает и умеет выполнять три команды: вперед, налево, направо.

2 педагог: Уважаемые пассажиры, наш космический корабль входит в зону турбулентности. Чтобы благополучно покинуть эту зону нам нужно немного поработать. Мы приготовили для вас вопросы, вам необходимо дать правильный ответ.

1 педагог: Педагоги, а кто же управляет роботами?

(ответы педагогов)

2 педагог: Управлять ими может только человек или компьютер. С помощью чего человек управляет роботом?

(ответы педагогов)

1 педагог: Управление роботами происходит с помощью программы. Как называют человека, который составляет программы?

(ответы педагогов)

2 педагог: Программист — человек, который создаёт компьютерные программы, при помощи пиктограмм или пиктокубиков посредством составления простой линейной программы. Пиктограмма – это знак, обозначающий команду для робота. Одна пиктограмма изображает одну (показывает магнитные карточки команду \mathcal{C} пиктограммами выкладывает на мольберте). Программирование – это процесс создания компьютерных программ. Создание программ такое увлекательное занятие, что, кажется, будто это почти не требует усилий. И сейчас я исполню роль Программиста и составлю линейную программу (составляет программу). Предлагаю вам перевоплотиться в роботов Двуногов и точно выполнять команды Командира. Закончив выполнение любой команды, Двуног говорит «Готово». Если команда невыполнима, Двуног докладывает «Команда невыполнима. Прекращаю работать». Роль Командира принимает на себя.....

(командир отдает команды, читая составленную программу, наблюдает и корректирует правильность выполнения команд, давая

дополнительные ориентиры тем, кто путается с направлением налево)

1 педагог: Молодцы, вы выполнили все команды. Раскрывая понятие программирование, как процесс создания компьютерных программ, не можем ни сказать про алгоритмы. Что такое Алгоритм?

(ответы педагогов)

2 педагог: Алгоритм - точное предписание о том, какие действия и в какой последовательности надо выполнить, чтобы достичь результата в любой из определенного вида; последовательность команд для решения поставленной задачи; система правил, сформулированных на языке понятном исполнителю и определяющих цепочку действий, в результате которой, мы приходим от исходных данных к нужному результату.

Эта цепочка действий - алгоритмический процесс, а каждое действие - шаг. Число шагов для достижения результата конечно.

Процесс разработки алгоритма - алгоритмизация.

Космический корабль, преодолел зону турбулентности, и мы вновь набираем высоту. Сейчас вы можете расстегнуть ремни и немного отдохнуть.

1 педагог: Изучая алгоритмику, у человека развивается умение планировать этапы и время своей деятельности, умение разбивать одну большую задачу на подзадачи. Алгоритмика дает возможность понять буквально то, что такое последовательность действия. Мы предлагаем вам поиграть в игру «Собери звездочки», которая направлена на формирование алгоритмического мышления. На экране вы видите клетчатое игровое поле, на котором находятся звездочки, необходимо проложить маршрут к каждой из них так, чтобы последовательно собрать каждую звезду и добраться до финиша. Обязательное условие игры — нельзя возвращаться на пройденные клетки.

(педагоги вместе прокладывают маршрут и собирают звёздочки)

2 педагог: Впереди я вижу космодром, пристигните ремни, космический корабль совершает посадку. А вот и первый житель – робот Ползун.

(педагог демонстрирует робота Ползуна)

1 педагог: Предлагаю запустить реального робота Ползуна, но для этого давайте вспомним какие команды он умеет выполнять.

(ответы педагогов)

2 педагог: При помощи чего человек-командир управляет роботом Ползуном?

(ответы педагогов)

1 педагог: Педагоги, обратите внимание на игровое поле, по которому будет передвигаться робот Ползун. На нем вы видите: стрелки-указатели, а также карточки: «Начальное положение робота» и «Финиш». Обратите внимание на карточку старт. Куда должны смотреть глаза у карточки старт — начальное положение робота. Для чего это нужно?

(ответы педагогов)

Теперь мы сможем его запустить?

(ответы педагогов)

2 педагог: Правильно, необходимо составить программу. Я приглашаю программиста, который нам в этом поможет.

(выходит педагог, исполняет роль Программиста, составляет программу с помощью пиктограмм)

1 педагог: А сейчас я приглашаю командира, который с помощью пульта сможет запустить робота Ползуна и привести его к финишу.

(выходит педагог, исполняет роль Командира, с помощью пульта управляет роботом)

2 педагог: Дошел робот до финиша?

Выполнил все команды?

Программист правильно составил программу, командир, следуя заданному алгоритму, управлял роботом, и игра была успешно завершена. На финиши

лежат три конверта. Роботы, которые живут на космодроме, приготовили для вас задания. Давайте вместе вспомним, как их зовут, и какие команды выполняет каждый из них.

(ответы педагогов, ведущий педагог выставляет на мольберте робота, а рядом его команды)

1 педагог: Так как конверта три, нам надо разделиться на три команды. Предлагаю встать всем в круг. Сейчас по музыку вы передаете друг другу мягкие игрушки-роботов Вертуна, Двигуна, Тягуна. Как только музыка прекращает звучать, и у кого в руках оказывается мягкая игрушка-робот проходит за тот стол, где изображён его робот.

(под песню «До чего дошел прогресс» (автор слов – Ю. Энтин, композитор – Е. Крылатов), педагоги передают роботов и проходят на свои места)

3. Практическая часть

2 педагог: Еще до первого контакта с программной системой «ПиктоМир» ребята проигрывают на материальных объектах весь набор понятий, иллюстрирующий принцип программного управления. Сейчас вам предстоит выполнить задания, которые приготовлены для каждой команды в реальной обстановке.

(педагоги выполняют задания, ведущие оказывают индивидуальную помощь. Обращают внимание на соответствие игрового поля с сочленяемыми ковриками, на установление фишки на старте и т.д.) (педагоги демонстрируют выполнение заданий)

1 педагог: Молодцы! Вы справились со всеми заданиями. А сейчас ответьте мне на вопрос: «Надо ли ребенка-дошкольника обучать основам программирования?»

(ответы педагогов)

2 педагог: Первые шаги в программировании сложны для ребенка, так как алгоритмический стиль мышления не развит с рождения. Однако его можно сформировать. Это вполне реальная задача, даже в дошкольном возрасте. Зачем ребенку алгоритмическое мышление?

(ответы педагогов)

1 педагог: Алгоритмическая грамотность необходима детям с дошкольного возраста. Чтобы малышу решить практическую задачу и получить ответ, необходимо выполнить ряд действий. Если дети учатся этому в дошкольном возрасте, то когда они придут в школу, обучение им будет даваться гораздо легче.

Такой тип мышления помогает освоению многих знаний и навыков, в том числе и школьных предметов. Способность мыслить точно, формально, если это нужно, становится одним из важных признаков общей культуры человека в современном мире.

Именно алгоритмы помогают ребёнку объяснить сложные явления в доступной форме, воспроизводить необходимую информацию, развивают такие психические процессы как память, внимание, образное мышление.

2 педагог: Уважаемые педагоги, в настоящее время наш детский сад является инновационной площадкой по направлению «Ресурсы цифровой образовательной среды «ПиктоМир» для педагогов и родителей».

Для детей, которые осваивают начальный опыт работы в цифровой образовательной среде «ПиктоМир» научными руководителями площадки разработана дополнительная общеразвивающая программа технической направленности «Апробация внедрение основ И алгоритмизации программирования для дошкольников и младших школьников образовательной среде «ПиктоМир». Программа рассчитана на три года, начиная со среднего возраста детей. К программе разработан календарнотематический план для каждого возраста. Разработаны конспекты занятий, к ним наглядный, раздаточный материал, которые выложены в сообществе ПиктоМир. К каждому занятию прилагается видео. Занятия проходят очень интересно, ведь ребята имеют возможность получить результаты сразу. Конечно, мы будем рады, если вас заинтересовало данное направление, и вы сможете вместе с нами и с вашими детьми продолжить увлекательное путешествие по цифровой образовательной среде «ПиктоМир».

1 педагог: А наше путешествие подходит к концу и нам пора возвращаться в наш детский сад. Пристегните ремни. Начинаем обратный отсчет 5,4,3,2,1, пуск! Пока космический корабль не приземлился, мы готовы ответить на ваши вопросы.

(вопросы от педагогов)

4. Заключительная часть семинара (рефлексия)

Педагог 2: А сейчас мы предлагаем взять в руки робота и по цепочке передать его друг другу, отвечая на наши вопросы.

- Как вы думаете, а детям понравится такой вид работы?
- Что вам было легко?
- С какими трудностями столкнулись?
- Появилось ли у вас желание использовать полученные знания и умения?
- Какие задания вам понравились больше всего?
- Что вас удивило?
- Что, на ваш взгляд не удалось? Почему?

- Зачем нам это нужно, необходимо?
- Какие достижения у вас сегодня?

Педагог 1: Вот мы и в детском саду. И в заключении хотелось бы отметить, ценность данной деятельности в том, что она позволяет по-новому организовывать воспитательно-образовательную работу с детьми. Мы благодарим всех вас за активность и желаем всем успехов в нашей работе и напомнить, что больше всего дети утомляются в бездействии. Спасибо за участие!